All posts by Martin Blustine

I studied physics and went on to work in infrared optics, millimeter wave and microwave engineering until retirement. My interests lie in teaching, music, radio astronomy, infrared systems and microwave and antenna engineering. I enjoy writing technical papers about ham radio topics. When I am not operating CW, I enjoy homebrewing ham gear and restoring vintage HP and Agilent test and measurement equipment.

Matching to the Complex Load Impedance of a Shortened, Non-Resonant Antenna – Part II

Introduction

In Part I of this article[1], a method for matching the complex load impedance of shortened, non-resonant antennas using L-matching networks and resonators was described. First, we matched to the real part of the complex load impedance, ignoring the imaginary part – the reactance part – until the real part had been matched with an L-matching network. Then, we resonated out the imaginary, reactive part to cancel it, at least at a single design frequency. The technique of reactive absorption was also demonstrated to further simplify matching networks.

Some years ago, Phil Salas, AD5X, presented an interesting approach for matching non-resonant antennas in his QST articles[2][3]. In these, he describes a method for feeding a 43′ vertical antenna with a base-loading network. In his matching technique, he reverses the process used in Part I. First, he resonates out the imaginary part of the complex, capacitive load reactance with an antenna base-loading coil. Once that has been accomplished, he steps up the 50 ohm, real source impedance with a 4:1 voltage UNUN to a convenient, higher real impedance, 200 ohms. Finally, he locates a place on the base-loading coil that matches the stepped-up, 200 ohm, real source impedance. Procedures are provided for resonating away the reactance of the antenna load and for locating the position of the tap.

This article recaps the methods used in Part I and presents a new method for simplifying matching networks. Eventually, this leads us to AD5X’s solution for base-matching a 43′ non-resonant vertical antenna.

Discussion

Figure 1 illustrates AD5X’s method. A 4:1 UNUN transforms the 50 ohm transmitter impedance to 200 ohms. This follows because a 4:1UNUN has a turns ratio of 2:1 and the impedance transformation goes as the square of the turns ratio, N2 = 4. This results in a feed-point at a practical location on the base-loading coil and at a reasonable voltage, too, since the UNUN only increases the voltage by a factor of 2. For a 100 Watt transmitter, the voltage would be stepped up from 70.7 VRMS to 141.4 VRMS and for a 1500 Watt transmitter, the voltage would be stepped up from 274 VRMS to 548 VRMS. By practical location, it is meant that the feed-point is located at some distance from the end of the inductor so that adjustments may be made.

Figure 1. A 4:1 UNUN Feeds A Tapped Base-Loading Coil. The base-loading coil is tuned to resonate out the capacitive reactance of the shortened antenna. A point is found on the base-loading coil to inject the signal from the 4:1 UNUN and to achieve a match. Please click on the figure to enlarge.

Since the voltage increases by a factor of 2, the current must decrease by a factor of 2 according to physical law. The entire base-loading coil is tuned to be resonant with the antenna load capacitance (for our case 204.3pf) at the design frequency. This is the same technique that was used in Part I[4].

There is another way to think about the base-loading coil, however. It may be drawn as an L-network. The base-loading coil may be drawn as a parallel element and a series element, Figure 2. Instead of a conventional LC L-network, a less commonly used LL L-network is shown. This will be discussed in detail towards the end of this paper.

If operation on more than one band is desired, the base-loading inductor must be tuned to a new value to resonate with the antenna’s capacitive reactance in the new band. The tap position must also be moved. These changes may be implemented with movable jumpers[5], or they may be automated with relays[6].

Figure 2. A Simple LL Network. This LL network consists of two windings in series. It is easier to think about this device as a special case of an L-matching network. For multi-band operation, the inductor has to be re-resonated and the tap must be moved. This may be implemented with jumpers, or with relays. Please click on the figure to enlarge.

Commonly and Less Commonly Used L-Network Topologies

Part I described the four most common topologies for L-matching networks, shown in Figure 3[7]. These are not the only ones. There are four other simple L-networks, shown in Figure 4, that prove useful under some conditions, particularly if suitable inductors or capacitors are unavailable. For more information about these topologies, please refer to a book on the subject of Smith Charts such as Phillip Smith’s, Electronic Applications of the Smith Chart[8].

Figure 3. Four Commonly Used L-Matching Network Topologies. These topologies may be used to map and match the entire complex impedance plane. Please click on the figure to enlarge. Reproduced under CC BY-NC by permission of Michael Steer, North Carolina State University.

Figure 4. Four Less Commonly Used L-Matching Network Topologies. At a) and b), low-pass topologies. At c) and d), high-pass topologies. These topologies may be useful if suitable inductors or capacitors are unavailable. These topologies may be used to map limited portions of the complex impedance plane. The low-pass LL-version, RS > RL, is exploited towards the end of this paper. Please click on the figure to enlarge.

Modeling of a 43′ Non-Resonant Vertical Antenna in EZNEC

A 43′ non-resonant vertical antenna was modeled at 3.6 MHz in EZNEC[9] to find the unmatched feed-point impedance. For this case, 60 radial wires, 66′ (20.1m) in length (~1/4l) were used. The radials were placed 0.01m above the ground so that EZNEC could be used to model them. EZNEC instructions state that for wires placed low to the ground, the Real/High Accuracy ground type must be selected[10]. The soil conductivity was set to 6 mS/m, while the dielectric constant was set to 13.

The 43′ antenna model is shown in Figure 5. This model utilizes wire for the 43′ vertical. It could just as easily have been replaced with a piece of aluminum tubing. This would alter the antenna impedance. However, for this instructive exercise, it doesn’t matter.

Figure 5. The 43′ Non-resonant Vertical. The radials were modeled at ~1/4λ for 80m. Please click on the figure to enlarge.

EZNEC was run for a few points to obtain the unmatched impedance at 3.6 MHz. The result is shown in Figure 6. The impedance at the base of the vertical is ZL = 16.69 – j217.3 ohms. The VSWR is shown to be 59.9:1, and this will be calculated directly from the unmatched impedance. The capacitive reactance, -j217.3 ohms, equates to 203.4 pf at 3.6 MHz.

Figure 6. EZNEC Plot of the Unmatched 43′ Antenna with Radials. The frequency span is 3.5 to 3.7 MHz. The VSWR is calculated in a 50 ohm system. Please click on the figure to enlarge.

Calculation of the Unmatched VSWR from the Load Impedance

The unmatched VSWR is calculated from the simulated antenna load impedance ZL = 16.69 – j217.3 ohms. To determine the VSWR, the input voltage reflection coefficient is calculated for the unmatched antenna. The input voltage reflection coefficient is a measure of how much of the voltage wave incident at the unmatched antenna discontinuity is reflected back toward the RF source. As the voltage reflection coefficient approaches unity, more of the incident wave is reflected from the antenna discontinuity back toward the transmitter or signal source. The voltage reflection coefficient is calculated from

where

ZL is the complex load impedance of the antenna as simulated in EZNEC, or measured with a vector antenna analyzer, in units of ohms.

ZS is the complex impedance of the signal source, which could be the transmitter, or a vector antenna analyzer, in units of ohms.

For the time being, we ignore the 4:1 UNUN and provide a match between a 50 ohm source and the complex load impedance. The 200 ohm source impedance is introduced into the simulation for Example 3.

Given,

the value of the complex reflection coefficient is given by

Combining terms, where possible

Method I – Rectangular Form

Rationalize the denominator

The magnitude of the reflection coefficient is given by

The voltage standing wave ratio is defined by

The VSWR of the unmatched 43′ vertical is 59.97:1. This agrees with the EZNEC result.

Method II – Polar Form

and let

and let

Dividing, we obtain

Moving the angle from the denominator to the numerator changes the sign.

All we need is the magnitude, and it agrees with Method I

VSWR is defined by

For exercise , we may convert from polar form back to rectangular form

This value of the magnitude of the reflection coefficient agrees with the first result for a VSWR of 59.61:1.

Return Loss

The return loss is a measure of  the loss of signal power due to mismatch between the source impedance and the unmatched load impedance. By IEEE convention, the return loss is always expressed as a positive number in units of dB. The lower the return loss, the worse the mismatch is.

This agrees with the EZNEC result.

Mismatch Loss

If the antenna load impedance is mismatched to the source, the loss in units of dB will be

Forward Power

The forward power, expressed in units of percent, is

Reflected Power

The reflected power, expressed in units of percent, is

Impedance Matching Techniques Using L-Networks – 50 ohm Source Impedance

In Part I, techniques for matching with L-networks were introduced. In this section, L-networks will be used to match a 50 ohm source to the mismatched 43′ antenna. (We will visit the case of the 200 ohm source later.) Once the real part of the complex antenna load impedance has been matched, the reactive part will be canceled using the reactance adsorption technique for the first two examples. A new technique will be used for the third example.

It is known from Figure 3 that the  equations in the following sections apply for RS > RL.

Example 1 – Low-Pass Topology with Reactance Adsorption

 

 

We write down the equations that will match a real source impedance of 50 ohms to a real load impedance of 16.69 ohms. Thus, we set the reactive part of the load impedance to zero.

From Figure 3(b), we learn that for

the unloaded Q is calculated from

The L-network reactances and component values are calculated from

We are not done yet because we have ignored the reactive part of the antenna load impedance. This is, after setting the real part to zero

This impedance is equivalent to a capacitance of

We remember that to cancel a negative reactance, we need an equal but opposite positive reactance. So, we need a positive inductive reactance of

to cancel the negative capacitive reactance of the load impedance.

The required inductive reactance is calculated from

This resonating inductance may be combined with the series inductance in the matching network for a total inductance of

This matching network may be modeled in RFSim99 with the following results. Figure 7 shows the circuit model, while Figure 8 reports a return loss of 55 dB. Figure 7 does not combine the series inductors. They could be combined, but they have been modeled separately for clarity. The simulation result is the same.

Figure 7. Circuit Model of Low-Pass Topology. The low-pass network matches the 50 ohm source impedance to the antenna complex load. The resonating inductor has not been combined with the L-network inductor for clarity. See text. Please click on the figure to enlarge.

Figure 8. Plot of the Low-Pass Topology Return Loss. This simulation is for the 50 ohm source impedance to antenna complex load match. The return loss is better than 55 dB at 3.6 MHz. Please click on the figure to enlarge.

Calculate the VSWR

Let’s calculate the VSWR from the return loss. The return loss is defined as

If we solve for the magnitude of the reflection coefficient, we have

Finding the antilog of both sides, we obtain

VSWR is defined as

Substituting, we obtain

The VSWR is 1.004:1.

From the graph, the 2:1 VSWR bandwidth for this low-pass L-network is 180 kHz. This is based on a return loss of 9.54 dB for a 2:1 VSWR.

Now that the low-pass solution has been modeled, let’s perform a similar analysis for the high-pass solution.

Example 2 – High-Pass Topology without Reactance Adsorption

We write down the equations that will match a real source impedance of 50 ohms to a real load impedance of 16.69 ohms. Thus, we set the reactive part of the load impedance to zero.

From Figure 3(d), we learn that for

the unloaded Q is calculated from

The L-network reactances and component values are calculated from

As before, we are not finished because we have ignored the reactive part of the antenna load impedance. This is

after setting the real part of the load impedance to zero.

This impedance is equivalent to a capacitance of

We remember that to cancel a negative reactance, we need an equal but opposite positive reactance. So, we need a positive inductive reactance of

to cancel the negative capacitive reactance of the load impedance.

The required inductive reactance is calculated from

For the high-pass configuration of Figure 9, the resonating inductance may not be easily combined with the shunt inductor in the L-network. Later, we will show how the network may be simplified. Meanwhile, let’s model the topology that we have. The simulation results in the return loss plotted in Figure 10. The result is 53 dB at 3.6 MHz.

Figure 9. High-Pass L-Network Topology Return Loss. This topology matches a 50 ohm source impedance to the complex antenna load impedance. The resonating inductor is not easily combined with any other component in the L-network. See text. Please click on the figure to enlarge.

Figure 10. Plot of the High-Pass Topology. This simulation is for the 50 ohm source impedance to antenna complex load match. The return loss is better than 53 dB at 3.6 MHz. Please click on the figure to enlarge.

VSWR Calculation

Substituting, we have

The VSWR is 1.004:1.

The 2:1 VSWR bandwidth for this high-pass L-network is also 180 kHz. This is based on a return loss of 9.54 dB for a 2:1 VSWR. This bandwidth is consistent with the value reported for the low-pass L-network.

Example 3 – High-Pass to Low-Pass Transformation by Partial Reactance Absorption

This is an interesting solution to our impedance matching problem. It puts a number of the tools that we have learned to work and provides an interesting path for simplifying the results from Example 2.

Since our matching network begins with a 4:1 UNUN, that transforms 50 ohms to 200 ohms, and we can change the source impedance for our calculations from 50 ohms to 200 ohms.

We begin, as before, by writing down what we know.

We write down the equations that will match a real source impedance of 200 ohms to a real load impedance of 16.69 ohms. Thus, we set the reactive part of the load impedance to zero.

From Figure 3(d), we learn that for

the unloaded Q is calculated from

The L-network reactances and component values are calculated from

As before, we are not done yet because we have ignored the reactive part of the antenna load impedance. This is

after setting the real part of the load impedance to zero.

This impedance is equivalent to a capacitance of

We remember that to cancel a negative reactance, we need an equal but opposite positive reactance. So, we need a positive inductive reactance of

to cancel the negative capacitive reactance of the load impedance.

The required inductive reactance is calculated from

The circuit model for our matching network is shown in Figure 11. Note that, as was the case for Example 2, the resonating inductor is not readily combined with the other inductor in the matching network. We will fix this. The return loss, Figure 12, is better than 64 dB at 3.6 MHz.

Figure 11. High-Pass L-Network with Resonating Inductance Return Loss. The resonating inductance is not easily combined with the shunt inductor at the input. This will be remedied in the next step. Please click on the figure to enlarge

Figure 12. High-Pass L-Network Return Loss. The return loss at 3.6 MHz is better than 64 dB. Please click on the figure to enlarge.

The circuit model for the high-pass topology includes a resonating inductor that cannot be easily absorbed. Is there any transformation that can be applied to simplify the circuit? It turns out that there is. The key to this transformation is to write the series elements in the matching network in terms of their algebraic reactances in ohms.

Please recall that the 799.3pf capacitor had a complex reactance of -j55.31 ohms. The 9.607μH inductor had a complex reactance of +j217.3 ohms. If we add the two together, we obtain

The plus sign indicates that, at least at 3.6 MHz, we could replace the 799.3pf capacitor and the 9.607μH inductor with a single inductor possessing a reactance of +j162.0 ohms.

It is easy enough to work out the inductance value from

This is an interesting result. We have replaced an LC high-pass network with a resonating inductance with an LL low-pass network consisting of a shunt inductor at the input followed by a series inductor.

Now, it is time to go back to the model and see what happens. You might want to find the 2:1 bandwidth and calculate the VSWR from the return loss of this topology. Hint: The 2:1 bandwidth may be read off the plot between the -9.54 dB points. Hint: Use the formula for converting return loss to VSWR that appears in Example1 and Example 2.

Figure 13 shows the circuit model for the partially absorbed resonant inductive reactance. This topology employs one of the lesser-used LL L-matching networks. Networks of this type will match reduced portions of the complex plane, but the transformation topology works for us in this example.

Figure 13. Low-Pass LL Circuit Model with Partial Reactance Adsorption of the Resonating Inductor. This topology is one of the less-used L-matching networks. Networks of this type will match reduced portions of the complex plane, but the transformation topology works for us in this example. Please click on the figure to enlarge.

Figure 14 plots the simulation results for the low-pass LL L-network that is the result of transforming the high-pass network LC L-network. The ~200 kHz bandwidth appears to be somewhat of an improvement over the other topologies. The return loss is better than 59 dB.

We calculate the VSWR as we have done before

The VSWR is 1.0022:1. As an exercise, try calculating the mismatch loss, forward power and reflected power following steps outlined earlier to see the improvement.

Figure 14. Return Loss of the Low-Pass LL L-Network. The ~200 kHz bandwidth appears to be somewhat of an improvement over the other topologies. See text. The return loss is better than 59 dB for a VSWR of 1.0022:1. Please click on the figure to enlarge.

Please note that when entering the values into the RFSim99 circuit models, the values are rounded off by the app. These truncations result in precision errors that degrade the values for return loss. Inevitably, they lead to errors in reading off the 2:1 bandwidths. Nonetheless, the return loss values are excellent for all three of the matched cases.

There may be some cases for non-resonant antennas where an LL L-network will not work. We were fortunate that we could completely absorb the capacitive reactance of the original high-pass L-network. If the capacitive reactance is too large and the resonating inductive reactance is too small, we will be left with a capacitor in our matching network. This simply means that our load impedance is on a part of the complex plane onto which an LL L-network will not map. To learn more about this, please consider giving Phillip Smith’s book[11] a read. He presents a lot of good material on the subject of LL and CC low and high-pass networks including where they map.

Conclusions

This paper has provided a recap of material provided in Part I for a 43′ non-resonant vertical antenna. The method of partial reactive absorption has been introduced. For our mismatched antenna, we were able to convert from an LC high-pass matching solution to an LL low-pass matching solution. This results in a solution that does not require capacitors. This may not always be the case. It depends on where on the complex plane the antenna complex impedance is located. CC solutions are also possible, but not for our value of complex load impedance. As an exercise, try to figure out why. Hint: Smith Chart L-matching network mappings. The matching topologies introduced in Parts I and II are by no means comprehensive. More complex matching networks offer wider bandwidth, and these provide opportunities for future articles. Part III will discuss the topic of high voltages encountered in matching networks as well as high voltages resulting from highly reactive mismatches in non-resonant antennas.

References

[1] Blustine, Martin, K1FQL, Matching to the Complex Load Impedance of a Shortened, Non-Resonant Antenna – Part I, N1FD Article, July 6, 2023. https://www.n1fd.org/2023/07/06/matching-antenna-part-i/

[2] Salas, Phil, AD5X, 160 and 80 Meter Matching Network for Your 43 Foot Vertical – Part 1, QST, Dec. 2009, pp. 30 – 32.

[3] Salas, Phil, AD5X, 160 and 80 Meter Matching Network for Your 43 Foot Vertical – Part 1, QST, Jan. 2010. pp. 1 – 4. https://www.arrl.org/files/file/QST%2520Binaries/QS0110Salas.pdf

[4] Blustine, July 6, 2023, op. cit.

[5] Salas, Dec. 2009, op. cit.

[6] Salas, Jan. 2010, op. cit.

[7] Blustine, July 6, 2023, op. cit.

[8] Smith, Philip H., Electronic Applications of the Smith Chart, p. 115, McGraw-Hill 1969. https://www.scribd.com/doc/96997209/78897620-Electronic-Applications-of-the-Smith-Chart-SMITH-P-1969

[9] Lewallen, Roy, EZNEC, Antenna Software by W7EL. https://www.eznec.com/

[10] Lewallen, Roy, EZNEC Pro+ v. 7.0 Printable Manual. https://www.eznec.com/ez70manual.html

[11] Smith, Philip H., op.cit.

What’s Inside the Hy-Gain AV-640 Vertical Matching Unit Anyway?

With the exception of a 2m handheld and a temporary end-fed half-wave vertical[1] for use on 20m in the IARU CW contest, I have been off the air since July 2020. After assessing the rocky soil in the backyard, I have come to the conclusion that ground radials won’t be gobbled up by the lawn as they were by the St. Augustine Grass in Florida[2]. That’s when I decided to install a compromise antenna – one that does not require radials. Since I am apt to hang half-wave antennas for the top bands, I settled on the Hy-Gain AV-640[3].

The AV-640 is an 8-band antenna that, in addition to the WARC bands, adds 6m. Since I have not operated on the “magic band” for many years, it’s a nice bonus.

The AV-640 arrived from the supplier in a box that was intact, but the first thing on the to-do list was to complete a parts inventory. That task was completed in, maybe, two hours. During that time, the parts, particularly small hardware, were separated into several Ziploc bags for easy identification later.

It turned out that there were a few pieces of stainless hardware and mounting brackets missing, and MFJ, with help from DX Engineering[4], replaced them in record time. Encouraged by the quick replacements, I decided to perform one last check before installing the antenna. Like any good homebrew tinkerer, I decided to open the Matching Network, Figure 1, to see what was inside and to make certain that nothing was broken. My curiosity was rewarded. I found that two wires had broken, thereby, separating them from the printed circuit board. There was also a Ty-Rap normally looped through the circuit board to anchor the toroid cores that had snapped. MFJ gave me the choice of repairing the unit myself which would have required complete disassembly, or a replacement assembly. I chose the latter.

Figure 1. Interior View of the Hy-Gain AV-640 Matching Unit. Please click on the image to enlarge it. A 1:1 current UNUN (right) for common mode rejection is followed by a 9T:20T autotransformer (left) for a turns ratio of 1:2.22. The black and white wires are connected in series. The black wire is the so-called “common winding”, while the white wire is the so-called “series winding”. The circuit board traces can be seen from the top. The matching unit arrived damaged with a black and a white wire detached from the PCB. The points of damage are circled in white. The broken black wire should be soldered to the PCB within the toroid. A Ty-Rap had also snapped. The 1:1 current UNUN is visible to the right.

Under “Theory of Operation” the AV-640 manual describes[5] the matching unit as a “broadband RF transformer” in one sentence and later on as a “4:1 toroidal transformer (voltage balun)”. Since the copper on the backside of the PCB is visible from the top, the wiring could be traced without removing the circuit card from the housing. What I saw was something that was a 1:1 stacked-core current UNUN[6] for common mode rejection followed by a stacked-core autotransformer having a 9:20 turns ratio (in Figure 1, the broken black wire should loop through the toroid and be soldered to the PCB within the core I.D.)

The schematic of the matching unit is shown in Figure 2. The autotransformer has a 9-turn (common) primary and a 11-turn (series) secondary. The black primary (common) winding of 9-turns is in series with the white 11-turn (series) secondary winding to form a 9:20 turn autotransformer. The voltage turns ratio is 1:2.22, whereas, the impedance transformation ratio goes as N2, or 1:4.93. So, the autotransformer transforms 50 ohms to 247 ohms. A shortened radial ground plane, lowers the impedance at the antenna base.

Figure 2. Hy-Gain AV-640 Matching Unit Schematic Diagram. Please click on the figure to enlarge it. A 1:1 current UNUN is followed by an autotransformer. Note that the left end of the UNUN is dotted. The coax shield is wound with the same sense as the center conductor to form a common mode choke. An autotransformer that follows transforms the impedance from 50 ohms to 247-ohms. Note that the left end of the autotransformer is dotted. The black and white windings are wound with the same sense. Point D is connected to point A to place the primary (common) winding in series with the secondary (series) winding. The antenna is placed at DC ground potential by an RF choke that serves to bleed static charge from the antenna. The autotransformer is AC-coupled to the antenna by a high voltage ceramic capacitor. The short (72″ long) ground plane radials, depicted, lower the impedance at the antenna feed point to one that is more easily accommodated by the autotransformer. Please note that the ground return for the autotransformer and ground plane radial combination is brought back to the input connector via the common mode choke coax shield that is wound around the ferrite core. The 247-ohm impedance match at the antenna feed point is a compromise match for the 8 bands. As a practical consideration, a remote antenna tuner should be located as close to the matching unit as is practical to remove standing waves from the transmission line.

We might also take a look at the voltages at the secondary of the autotransformer to see if they are reasonable. At 100W we expect to see 70.7 Vrms (100 Vpeak) under matched conditions at the current UNUN input. If we multiply this by the 1:2.22 voltage turns ratio, we have 157 Vrms (222 Vpeak) at the antenna terminal. These numbers increase somewhat for 1.5 kW to 274 Vrms (387 Vpeak) and 608 Vrms (860 Vpeak), respectively.

It has been shown previously[7] that these numbers may degrade by as much as the square root of the VSWR. Thus, for a VSWR of 3:1, we might expect these numbers to increase by a factor of 1.732, and so on.

The lossy ferrite used in the UNUN and in the autotransformer places limits on the continuous (key-down) operation of this antenna. This subject was discussed in other posts[8][9].

For these reasons, this antenna has been rated for operation on each band within their 2:1 VSWR bandwidths[10].

References

[1] Blustine, Martin, Temporary 20m EFHW Vertical Installation, N1FD post, July 2, 2023. https://www.n1fd.org/2023/07/02/20m-efhw-vertical/

[2] Blustine, Martin, A Flagpole Antenna Project for Residential Settings, N1FD post, May 23, 2022. https://www.n1fd.org/2022/05/23/flagpole-antenna/

[3] Hy-Gain AV-640, HF VERTICAL, 8 BANDS-40/30/20/17/15/12/10/6 M, MFJ Enterprises, Inc., 308 Industrial Park Rd, Starkville, MS 39759. https://mfjenterprises.com/products/av-640

[4] DX Engineering, 1200 Southeast Ave.Tallmadge, Ohio 44278. https://www.dxengineering.com/parts/hgn-av-640

[5] Hy-Gain AV-640 8-Band Vertical Antenna, Instruction & Assembly Manual, Revised 14 July 2023, pp. 3-4. Hy-Gain, 308 Industrial Park Road, Starkville, Mississippi 39759. https://static.dxengineering.com/global/images/instructions/hgn-av-640_co.pdf?_gl=1*em8g2o*_ga*Nzc2NjgwNDEyLjE2OTQxMTU0MjQ.*_ga_NZB590FMHY*MTY5NDExNTQyNC4xLjEuMTY5NDExNTg0MS41MC4wLjA.

[6] Blustine, Martin, Differential and Common Modes on Transmission Lines – Part II, N1FD post, September 14, 2022. https://www.n1fd.org/2022/09/14/differential-and-common-modes-on-transmission-lines-part-ii/

[7] Blustine, Martin, Worst Case Standing Wave Voltage on a Transmission Line, N1FD post, August 1, 2022. https://www.n1fd.org/2022/08/01/standing-wave-voltage/

[8] Blustine, Martin, Power Losses and Dissipation in Various Ferrite Devices – Part I, N1FD post, August 10, 2022. https://www.n1fd.org/2022/08/10/ferrite-device-losses/

[9] Blustine, Martin, Power Losses and Dissipation in Various Ferrite Devices – Part II, N1FD post, August 12, 2022. https://www.n1fd.org/2022/08/12/ferrite-loss-2/

[10] Hy-Gain AV-640 8-Band Vertical Antenna, Instruction & Assembly Manual, Op. Cit., p. 5. https://static.dxengineering.com/global/images/instructions/hgn-av-640_co.pdf?_gl=1*em8g2o*_ga*Nzc2NjgwNDEyLjE2OTQxMTU0MjQ.*_ga_NZB590FMHY*MTY5NDExNTQyNC4xLjEuMTY5NDExNTg0MS41MC4wLjA.

Fun with the Clear Sky Institute HamClock

I haven’t had the occasion to use any programming languages since retirement. That’s why the addition of a Raspberry Pi 4 Model B to the shack was a welcome change. I like to think of the Raspberry Pi as just another computer – one that uses a different operating system. With the Raspberry Pi, I can browse the Internet, access email, and write and run programs.

When I began to assemble a shack, I reserved a space on the wall for a 32″ TV, Figure 1, which was purchased during a temporary rental stay. That TV has been unused for 3 years, but it was earmarked for a HamClock.

Figure 1. Unused 32″ TV Earmarked for HamClock. The TV was wall-mounted above the shack monitors. Please click on image to expand.

I searched the N1FD site to see if anyone had written about HamClock, but no articles were found. The first article for HamClock, written by Elwood Downey, WB0OEW, appeared in October 2017 QST[1]. In his article, he calls for the use of an Adafruit HUZZAH ESP8266 Wi-Fi system-on-chip. That device was fastened to the back of a 7″ TFT display.

The version of HamClock that I built for use with the 32″ HDTV employs the Raspberry Pi 4 Model B, Figure 2, with 2 GB memory[2]. The kit that I found on Amazon includes a 64 GB microSD card (with USB adapter) onto which the Raspberry Pi operating system had been preloaded. The kit also includes a plastic case with fan, little rubber feet, tiny screws to attach a camera, device heatsinks, a wall-wart power supply, a micro HDMI to HDMI cable, an instruction manual and various assembly instruction cards. The user has to provide their own USB mouse and keyboard. I already owned a wireless mouse and keyboard so I was able to use a single USB 2.0 port on the Pi for the wireless adapter.

If you already have a microSD memory card with USB adapter, power supply, mouse, keyboard and HDMI cable, you could get by with a Raspberry Pi Zero[3] at one-fourth the price.

Figure 2. Raspberry Pi 4 With Wireless Mouse and Keyboard. A single USB 2.0 port on the Pi is used for the wireless adapter leaving 1 x USB 2.0 and 2 x USB 3.0 ports unused. Power and HDMI cables are visible. Please click on image to expand.

If your Raspberry Pi does not come equipped with the operating system installed, you can download it from the official Raspberry Pi website and store it on a microSD card for installation provided that you have a USB to microSD card adapter. The Raspberry Pi site allows you to select an operating system and it allows you to specify where the operating system will be stored upon download:

https://www.raspberrypi.com/software/

Please, follow the directions to install the operating system on your device.

I noticed an ambiguity in the kit documentation regarding connection of the cooling fan to the Pi bus header. A tiny drawing, Figure 3, shows where the red and black leads should be connected, namely pins 1 and 14, respectively. The documentation should make it clear that the long header row that contains pin 1 contains all of the odd-numbered pins while the long header row that contains pin 14 contains all of the even-numbered pins. This makes it a bit easier to locate pin 14.Figure 3. Location of the Fan Voltage Pins. The long header row that contains pin 1 contains all of the odd-numbered pins while the long header row that contains pin 14 contains all of the even-numbered pins. Please click on image to expand.

The instructions advise that the HDMI port closest to the DC power supply input be employed if only one monitor will be used. I was confused about the power supply connector. It may be plugged into the Pi upside down. However, I found that a bright flashlight can be used to look inside the power supply connector and inside the Pi power supply input jack to ensure that the conductive contacts face one another. If the connector has been plugged in correctly, some LED status lights on the Pi circuit card should illuminate once the inline DC power cord switch, Figure 4, has been turned on.

This switch has to be used with caution. The operating system, if running, must be shut down prior to turning the DC power switch to the off position. Failure to do so could corrupt data stored in memory and on the microSD card. This is a minor weakness in the design.

Figure 4. The Inline DC Power Switch. The operating system must be shut down from the Raspberry Pi menu icon on the taskbar before turning the DC power switch to the off position. Please click on image to expand.

Two methods may be used to shut down the Raspberry Pi. There is a Raspberry icon that appears on the taskbar. One of the drop-down selections is to log out. Once selected, another dropdown appears that offers the choice to shutdown or reboot. There is a second method that permits shutdown from a terminal window, Figure 5, which may be opened from the taskbar. One need only enter the command:

sudo shutdown -h now

to close the operating system. A third option is to add a momentary switch to the Pi bus header. That may be used to assert a shutdown command for the operating system. I have not implemented that feature.

Figure 5. Terminal Window. A terminal window may be opened from the Pi taskbar. Please click on image to expand.

Once an unused HDMI input to the monitor or TV is selected, and the mouse, keyboard and HDMI cable are plugged in, the power switch in the supply power cord may be switched on. Within seconds the Raspberry Pi logo appears followed by a series of questions that include language and time zone. The operating system will also ask for access to WiFi. I found that WiFi was easier than connecting another Ethernet cable to the access point.

Once WiFi is connected, the operating system will update. Finally, a desktop appears. The taskbar was docked to the top of the screen, but I moved it to the bottom because that is where I am used to seeing it, Figure 6. That may be accomplished by selecting that feature from the Raspberry Pi icon on the taskbar. The operating system provides access to the Internet via a browser icon that appears on the taskbar. There are also icons for a terminal window and Bluetooth.

Figure 6. Taskbar Moved and Docked to the Bottom of the Screen. This may be selected from screen appearance under the Raspberry Pi icon on the taskbar. Wallpaper like this may be selected from a list. Please click on image to expand.

The Raspberry Pi icon, Figure 7, provides several selections for screen appearance, resolution and the usual accessories. It also provides a means for shutting down the operating system.

Figure 7. Menu Provided Under Raspberry Pi Accessible from Taskbar. Access to many options is provided here including Raspberry Pi screen resolution. This is not the same as the HamClock screen resolution setting, which will be selected separately. Please click on image to expand.

It was learned that the means for capturing screenshots within the Pi operating system is Print Screen (PrtSc) just as it is in Windows, so this method has been used to illustrate this article. The images are stored as PNG files in the home Raspberry Pi folder, not under Screenshots in the Photo folder where one would expect them to be.

After opening a terminal window, I followed the directions provided at the Clear Sky Institute[4] web page under the Desktop tab with some notable exceptions. First, I took the advice of KM4ACK[5] to circumvent error messages by executing two scripts before attempting anything else. These scripts may be found listed under the Desktop tab under the subsection titled “To install HamClock on other UNIX-like systems follow these steps”, paragraph 2, “If you get errors”[6]. These steps at Clear Sky are correct except for a syntax error pointed out by KM4ACK[7] in the script:

sudo apt-get -y curl install make g++ libx11-dev xserver-xorg raspberrypi-ui-mods libraspberrypi-dev linux-libc-dev lightdm lxsession openssl

This script must be corrected so that the word ‘install’ precedes the word “curl”. The corrected script should read:

sudo apt-get -y install curl make g++ libx11-dev xserver-xorg raspberrypi-ui-mods libraspberrypi-dev linux-libc-dev lightdm lxsession openssl

I don’t know why this has not been corrected on the Clear Sky Institute web page, but I am happy that KM4ACK pointed it out.

We may now follow the steps listed under “To install HamClock on a Raspberry Pi follow these steps”. It is suggested that the lines of code be executed line-by-line.

cd
curl -O http://www.clearskyinstitute.com/ham/HamClock/install-hc-rpi
chmod u+x install-hc-rpi
./install-hc-rpi

If you choose not to install a desktop icon, you may run this script from a terminal window to start HamClock:

hamclock &

The first time that HamClock is run, some entries are requested. HamClock will also ask if you would like to connect to WiFi, Figure 8. Since you may have entered these for the Raspberry Pi operating system, you may answer yes if you would like to connect. HamClock will enter your username and password for you.

Figure 8. Connect to WiFi Screen. You will enter your call sign on setup page 1. You may provide your network username and password after saying yes to WiFi. If you provided these to the Raspberry Pi operating system, they will auto-fill if you select, yes. You can enter your latitude, longitude and grid square here, or you can Geolocate on your IP address (not recommended). Please click on image to expand.

Once the HamClock screen appears, if the correct resolution has been chosen, the screen should be mostly filled from top to bottom, but there may be some black bars on either side of the window. There are numerous instructions online about how to deal with this. I didn’t bother. Once I had chosen the closest resolution to my screen, 1366 x 768, I left well enough alone. HamClock also asks if you would like full-screen view, Figure 9, which eliminates the HamClock title bar as well as the taskbar. I selected that view.

Figure 9. Where to Select Full-Screen View. Full-screen view selection is on setup page 5. Please click on image to expand.

To close HamClock, please note that there is a small padlock symbol, Figure 10, beneath UTC in the upper left-hand corner. If one left clicks and holds the lock for a few seconds, then releases, a script will appear that will ask if you would like to exit the program. If you also intend to shut down the Pi, please don’t forget the logout procedure that is found under the Pi logo in the taskbar.

Figure 10. Padlock Symbol Beneath the UTC Box. If you were to left click and hold on the lock for a few seconds and release, a script will appear that will ask if you would like to exit HamClock. Please click on image to expand.

If you would like HamClock to start automatically upon reboot, a script that will do it may be run anytime from a terminal window. The scripts are found under, ” To install HamClock on other UNIX-like systems follow these steps”, in paragraph 10:

cd ~/ESPHamClock
mkdir -p ~/.config/autostart
cp hamclock.desktop ~/.config/autostart

You may want to place a HamClock icon on your Raspberry Pi desktop. That may be accomplished by copying, pasting and executing the following script in a terminal window:

cd ~/ESPHamClock
mkdir -p ~/.hamclock
cp hamclock.png ~/.hamclock
cp -p hamclock.desktop ~/Desktop

After running the scripts, close the terminal window and reboot the machine from the Pi icon. HamClock should restart immediately. The size of the HamClock window may appear reduced after reboot but may be expanded just as one might expand any other window.

As soon as HamClock is up and running you may want to explore all of the options and items that are found under “Terrain” that is found in the upper left-hand corner of the map, Figure 11. An extensive dropdown menu will appear. Go ahead and press the radio buttons followed by “okay” to see what happens. Every new screen is a surprise. It’s not that hard to get back to the screen where you started, so please experiment a little bit.

Figure 11. Dropdown Menu for the Main Graphic View. You will want to explore all of the options available from this dropdown menu visible to the left of the Mercator projection. Other menus may be accessed by clicking on the titles that appear within the smaller graphics. For a complete description, please consult the User Guide. Please click on image to expand.

Additional views for the smaller graphics may be requested by clicking on the graphics titles, themselves. For example, you may want to display propagation paths from your locale as supplied by WSJT, Figure 12. There are also satellite and space station orbits.

To change the color of your call sign background, click to the right of your call sign. To change the color of your call sign, click on the letters.

Figure 12. Display of Propagation Paths From Our Locale. If WSJT-X was selected on Page 2 of the setup menu, this graphic will be displayed. My call sign color and background color has been changed for this view. Please click on image to expand.

A particularly interesting view of the aurora is shown in Figure 13. This is one more example of how much data is available for presentation in Hamclock.

Figure 13.  Display of the Aurora. This is another example of how much data is available for display within the HamClock application. Please click on image to expand.

A complete HamClock User Guide is available at the Clear Sky Institute website under the User Guide tab[8].

Please let me know if you build a HamClock of your own. It is nice to receive feedback.

References:

[1] Elwood Downey, WB0OEW, HamClock, QST, October 2017, pp. 42-44.

[2] Raspberry Pi 4, Model B, 2 GB.

https://www.amazon.com/dp/B07TMGBPFQ/ref=sspa_dk_detail_6?ie=UTF8&pd_rd_i=B07TKFKKMPp13NParams&s=electronics&sp_csd=d2lkZ2V0TmFtZT1zcF9kZXRhaWxfdGhlbWF0aWM&th=1

[3] Raspberry Pi Zero (2017).

https://www.amazon.com/Raspberry-Pi-Zero-Wireless-model/dp/B06XFZC3BX/ref=sr_1_8?crid=2P2OQ2SF3LHR5&keywords=raspberry+pi&qid=1692662504&sprefix=Raspberry+pi%2Caps%2C151&sr=8-8

[4] Elwood Downey, WB0OEW, Clear Sky Institute. https://www.clearskyinstitute.com/ham/HamClock/

[5] Jason Oleham, KM4ACK, YouTube, 2:30. https://www.youtube.com/watch?v=2Cy5Swmk3gU

[6] Elwood Downey, WB0OEW, Clear Sky Institute, Op. Cit., Desktop tab.

[7] Jason Oleham, KM4ACK, YouTube, Op. Cit.

[8] Elwood Downey, WB0OEW, Clear Sky Institute, Op. Cit., User Guide tab.

 

 

 

Radio Amateurs Developing Skills Worldwide