Note: We will be recording all Bootcamp Sessions. Anyone not wishing to be recorded should mute their video or disconnect.

GETTING STARTED WITH AMATEUR RADIO SATELLITES

Nashua Area Radio Society

Fall 2020

©Nashua Area Radio Society and AB1OC, All Rights including recording in any form are reserved.

Amateur Satellites

- Orbiting Satellites Carrying Amateur Radio (OSCAR)
- They are small!
- They ride share with big payloads

Amateur Satellites

- Have amateur Rx and Tx
- Some have experiments
 - Helps to secure grants to pay for our satellites!
- Costs nothing to use

Experiment Boards

Receiver & Transmitter

What Can I Do With Amateur Satellites?

- Learn New Skills/Ideas
- Collect Data/Messages/Pictures (think Short Wave Listener)
- Communication ←What we will mainly talk about
 - With other other hams (+ astronauts in space)
 - Contesting
 - Extra points on field day
 - Satellite-specific awards
 - Improve weak signal skills

Where Am I Located?

Maidenhead Grid Squares

 Maidenhead Grid Squares divide up the world into a combination of 2 letters + 2 digits

Each grid is approx. 70 miles X
 100 miles

AB10C Satellite Grids

- Hams try to work a station in every grid square
- Earn a VUCC Award for confirming 100+ grids

Things to Consider

Uplink and Downlink Bands

- Unlike terrestrial repeaters where Tx and Rx are in same band
- We send our signal to a satellite on the uplink and we receive other users' signals on the downlink
- Satellites use different frequencies and bands to receive our signals and return them to earth
- Its important to be able to hear your own signal in the downlink use two radios to enable this

Things to Consider

Satellite Tracking

- Satellites are moving around the world
 - In view about 10 min (a pass)
 - 2-6 passes per day
 - All at different angles and directions

- Apps tell when and where satellite is
- Many apps on IOS, Android, PCs

IOS App Example: Satsat

Satellite Tracking Other Apps

Android: AmsatDroid

Mac: MacDoppler (\$)

Windows: SatPC32 (\$)

• Linux: Gpredict (Free)

How do the apps know where satellites are?

Keplerian Elements downloaded from internet

This set of numbers is all you need to track each bird:

SO-50 1 27607U 02058C 20303.41730594 .00000041 00000-0 26214-4 0 9992 2 27607 064.5555 324.7826 0032786 129.0565 231.3463 14.75671885960481

Things to Consider

Doppler Shift

Radio waves sent from fast moving objects also experience Doppler Shift

Video on YouTube

- LEO Satellites and the ISS are in low orbits and must move at high speeds
 - Typical orbital velocity ~= 17,500 mph or nearly 5 miles/sec

A Satellite Ground Station must adjust its transmit (uplink) and receive (downlink) radio frequencies to compensate for Doppler Shift.

Types of Satellites

FM EasySats, Linear Sats, Digital Sats...

- FM Repeaters
 - "EasySats" but they are very busy!
 - That's mostly what we will talk about
- Telemetry only
- Linear Transponders
 - Harder to work but more users possible
 - Usually use sideband (USB/LSB)
 - Best done with computer control
- APRS (digital packet)
- Other kinds of digital

Getting Started

What Equipment Do I Need?

Requirements:

- Frequencies
 - Antenna and Radio must be able to deal with both uplink and downlink bands simultaneously
- Motion
 - Must track satellite as it moves
- Technique
 - Listen for YOURSELF on the downlink while transmitting on uplink
- Antenna Gain
 - Satellites are low power, as are HTs. Antenna gain is required.

Getting Started

Antennas (handheld)

Handheld yagis are the most common

This Arrow can have an optional diplexer in handle for single feedline

- Arrow Yagi Antenna
 - Notice separate 2 m elements and 70 cm elements
 - Two Yagi antennas on one boom.
 - Two feedlines, one for each band
 - Must rotate to align with satellite polarity for Rx and Tx
- Tripod or some sort of support can be helpful

Radios for Satellites

Two Inexpensive HTs

- For example Baofeng BF-F8HP (many others)
- \$70^{ish} on Amazon many others are cheaper
- Good choice with an Arrow antenna which has two feedlines - one for each radio
- A Headset with a PTT button will make operating much easier
 - Especially for hearing your own signal in the downlink
- Don't forget cables and adapters!
- Good for FM Only

Full Duplex Radio Antenna Options Exist but are more \$

Getting Started

Programming Your HT(s) For Satellites

AO-91 (U/V Mode)	Downlink (V)	Uplink (U)
Acquisition of Signal	145.960 MHz	435.240 MHz + 67.0 Hz Tone
Early in Pass		435.245 MHz + 67.0 Hz Tone
Mid Pass (TCA)		435.250 MHz + 67.0 Hz Tone
Late Pass		435.255 MHz + 67.0 Hz Tone
Loss of Signal		435.260 MHz + 67.0 Hz Tone

SO-50 (V/U Mode)	Downlink (U)	Uplink (V)
Activate SO-50		145.850 MHz + 74.4 Hz Tone
Acquisition of Signal	436.805 MHz	
Early in Pass	436.800 MHz	
Mid Pass (TCA)	436.795 MHz	145.850 MHz + 67.0 Hz Tone
Late Pass	436.790 MHz	
Loss of Signal	436.785 MHz	

Program HT(s) memories with frequencies for each FM satellite

Getting Started Summary What Equipment Do I Need?

- Two Handheld Radios
- Handheld Yagi
- Smartphone
 - Satellite tracking app
 - Compass
- Adjust UHF frequency to correct for Doppler (use memories)
- A Voice Recorder is helpful to capture QSOs details as you make them
- Maybe tent stakes to mark rise/set locations
- Maybe helpers to call out directions, frequencies, write log

Making EasySat Contacts

Here is what it looks like!

Video on YouTube

I Love This Stuff

What Else Can I Do?

- Linear Satellites
- Digital Satellites
- Collect SSTV Pictures from the ISS and NO-104
- Receive Telemetry
 - Send to cloud for analysis

Check out amsat.org!

Progressing With Satellites

A Variety of Stations are Possible

- Permanent or semi-portable
- With and without rotators
- Ground mount in the yard, portable in a parking lot, or a dedicated tower
- Circular-polarized antennas for permanent installations
- Computer control for linear satellites
- View our Tech Night for more ideas and info

Questions?

Have Fun!

To Learn More:

Check out the Nashua Area Radio Society's Tech Night Program at: n1fd.org/tech-night

Become an Internet Subscriber (or members of NARS): n1fd.org/join-us

Much more information, pictures and video are available on our Blog at: stationproject.blog

